Spectral Hashing
نویسندگان
چکیده
Semantic hashing[1] seeks compact binary codes of data-points so that the Hamming distance between codewords correlates with semantic similarity. In this paper, we show that the problem of finding a best code for a given dataset is closely related to the problem of graph partitioning and can be shown to be NP hard. By relaxing the original problem, we obtain a spectral method whose solutions are simply a subset of thresholded eigenvectors of the graph Laplacian. By utilizing recent results on convergence of graph Laplacian eigenvectors to the Laplace-Beltrami eigenfunctions of manifolds, we show how to efficiently calculate the code of a novel datapoint. Taken together, both learning the code and applying it to a novel point are extremely simple. Our experiments show that our codes outperform the state-of-the art.
منابع مشابه
Sparse spectral hashing for content-based image retrieval
In allusion to similarity calculation difficulty caused by high maintenance of image data, this paper introduces sparse principal component algorithm to figure out embedded subspace after dimensionality reduction of image visual words on the basis of traditional spectral hashing image index method so that image high-dimension index results can be explained overall. This method is called sparse ...
متن کاملImage authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملCompressed Image Hashing using Minimum Magnitude CSLBP
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...
متن کاملFast Approximate Nearest Neighbor Methods for Non-Euclidean Manifolds with Applications to Human Activity Analysis in Videos
Approximate Nearest Neighbor (ANN) methods such as Locality Sensitive Hashing, Semantic Hashing, and Spectral Hashing, provide computationally efficient procedures for finding objects similar to a query object in large datasets. These methods have been successfully applied to search web-scale datasets that can contain millions of images. Unfortunately, the key assumption in these procedures is ...
متن کاملComparison Of Modified Dual Ternary Indexing And Multi-Key Hashing Algorithms For Music Information Retrieval
In this work we have compared two indexing algorithms that have been used to index and retrieve Carnatic music songs. We have compared a modified algorithm of the Dual ternary indexing algorithm for music indexing and retrieval with the multi-key hashing indexing algorithm proposed by us. The modification in the dual ternary algorithm was essential to handle variable length query phrase and to ...
متن کاملAn Efficient Hyperspectral Image Retrieval Method: Deep Spectral-Spatial Feature Extraction with DCGAN and Dimensionality Reduction Using t-SNE-Based NM Hashing
Hyperspectral images are one of the most important fundamental and strategic information resources, imaging the same ground object with hundreds of spectral bands varying from the ultraviolet to the microwave. With the emergence of huge volumes of high-resolution hyperspectral images produced by all sorts of imaging sensors, processing and analysis of these images requires effective retrieval t...
متن کامل